Для цитирования: Пинеда, С. / Влияние двух рационов, предназначенных для растворения камней, на параметры минерального обмена у кошек/ С. Пинеда, Е. Агилера-Тейеро, А.И. Райа, А. Монтесде-Ока, М. Родригес, И. Лопес // Российский ветеринарный журнал. — 2025. — № 4 — С. 60–65. For citation: Pineda C., Aguilera-Tejero E., Raya A.I., Montesde-Oca A., Rodriguez M., Lopez I. Effects of two calculolytic diets on parameters of feline mineral metabolism, Russian veterinary journal (Rossijski) veterinarnyj zhurnal, 2025, No. 4, pp. 60–65.

УДК 619: 615 DOI RAR

Источник: Journal of Small Animal Practice (2015) 56, 499-504 DOI: 10.1111/jsap.12368 Реферативный перевод

Влияние двух рационов, предназначенных для растворения камней, на параметры минерального обмена у кошек

С. Пинеда¹, Е. Агилера-Тейеро¹, А.И. Райа¹, А. Монтесде-Ока¹, М. Родригес², И. Лопес¹

Цели: оценить влияние двух рационов, предназначенных для растворения камней, на избранные параметры минерального обмена у кошек.

Материалы и методы: два готовых сухих корма, предназначенных для растворения струвитных уролитов, исследовались на 14 кошках. Исследование запланировано как перекрестное с двумя последовательностями и четырьмя периодами: исходным периодом, двумя 60-дневными «вводными периодами», во время которых животных кормили рационом для растворения уролитов (корм 1 и корм 2), и одним 30-дневным «периодом вымывания». Данные представлены как медиана (диапазон).

Клиническая значимость: оба корма привели к повышению концентрации магния в моче по разным механизмам: подкисление мочи (корм 1) и повышение натриевой нагрузки (корм 2).

Ключевые слова: кошки, рацион, минеральный обмен, растворение камней.

Effects of two calculolytic diets on parameters of feline mineral metabolism

C. Pineda¹, E. Aguilera-Tejero¹, A.I. Raya¹, A. Montesde Oca¹, M. Rodriguez², I. Lopez¹

Results of parts of this study were presented in the ISFM Feline Veterinary Congress, Riga, Latvia, 2014

Objectives: To evaluate the influence of two feline calculolytic diets on selected parameters of mineral metabolism. **Materials and methods:** Two dry commercial diets designed for struvite urolith dissolution were evaluated in 14 cats. The study was designed as a two-sequence, four-period crossover protocol with a baseline period, two 60-day «run-in» periods in which calculolytic diets (Diet 1 and Diet 2) were fed and one 30-day «wash-out» period. Data are expressed as median (range). **Results:** Feeding the calculolytic diets for two months did not alter plasma concentrations of calcium, phosphorus, magnesium and parathyroid hormone. A significant (P<0•05 in each case) decline in calcitriol was observed after administering both diets from 236•4 (122•4–429•6) to 170•4 (108•0–394•3) pmol/L (Diet 1) and from 278•4 (153•6–492•0) to 177•1 (87•6–392•4) pmol/L (Diet 2). Cats fed Diet 1 showed a significant increase in urine calcium concentration (from 0•3 (0•2–0•5) to 0•4 (0•3–0•7) mmol/L). Magnesium concentration in urine was significantly increased with both diets, from 1•4 (0•1–1•7) to 1•5 (1•3–2•4) mmol/L (Diet 1) and from 1•1 (0•4–1•9) to 2•0 (0•1–3•1) mmol/L (Diet 2).

Clinical significance: Both diets resulted in an increased urinary concentration of magnesium, through different mechanisms: urine acidification (Diet 1) and increased sodium load (Diet 2).

Keywords: cats, diet, mineral metabolism, stone dissolution.

Сокращения: ПТГ — паратиреоидный гормон, СКФ — скорость клубочковой фильтрации, ФВ — фракционное выведение

Введение

Для профилактики заболеваний нижних мочевыводящих путей у кошек рекомендуются изменения рациона, способствующие образованию больших

объемов разбавленной мочи и снижению перенасыщения мочи, которое провоцирует формирование камней определенных типов [11]. Рационы для кошек, способствующие растворению камней, изменяют состав мочи, в частности снижают рН (добавление метионина, хлорида аммония и др.) и изменяют концентрацию минеральных веществ (магния, фосфора) [11], а также увеличивают объем мочи (за счет добавления соли — NaCl) [12, 23]. Так как корма для растворения камней применя-

¹ Университет Кордовы (Кордова, Испания)

²Институт биомедицинских исследований им. Маймонида (IMIBIC), Больница королевы Софии (Кордова, Испания)

¹ Universidad de Cordoba (Cordoba, Spain).

²Instituto Maimonides para la Investigación Biomedica (IMIBIC), Hospital Reina Sofia, (Cordoba, Spain).

ются длительно, они потенциально способны изменить минеральный обмен, поэтому поднимался вопрос об их безопасности [5]. Известно, что ацидоз влияет на минеральный обмен у кошек, усиливая секрецию ПТГ, способствуя резорбции костей, снижая концентрацию кальцитриола в крови и изменяя выделение минеральных веществ с мочой [5]. Снижение рН мочи может повысить выведение кальция и магния с мочой [5]. Хотя этиология и патогенез неизвестны, предполагалась связь подкисляющих рационов с идиопатической гиперкальциемией кошек [16].

Данные о влиянии высокой концентрации NaCl на минеральный обмен у кошек противоречивы: хотя сообщалось, что NaCl в рационе усиливает ФВ кальция [12], но некоторые исследования не обнаружили какого-либо влияния на концентрации кальция или магния в моче [23]. Результаты недавних исследований на крысах дают основания предполагать связь между потреблением соли и выведением кальция и магния почками, что ассоциируется с повышением ПТГ [13].

Цель исследования

Основной целью этого исследования была оценка влияния двух готовых кормов с составом, способствующим растворению струвитных камней, на параметры крови и мочи, связанные с минеральным обменом, у кошек, получавших корма на протяжении двух месяцев.

Высказано предположение, что эти рационы с низким содержанием определенных минеральных веществ (магния, фосфора) и в то же время предназначенные для подкисления мочи и/или усиления диуреза, должны изменять показатели крови и мочи, связанные с минеральным обменом.

Материалы и методы

Животные. Всего для исследования было взято 14 некастрированных европейских короткошерстных кошек (7 котов, 7 кошек) в возрасте 19 (18...20) месяцев. Животных произвольно выбрали из пяти пометов, рожденных в колонии кошек для исследований, и содержали в питомнике группами (3...4 кошки в группе). Кошки были признаны здоровыми на основании нормальных результатов клинического осмотра, клинического анализа крови, биохимического анализа крови и анализа мочи.

План исследования. Оценивали два готовых лечебных корма для кошек для растворения камней: корм 1 и корм 2. Состав кормов показан в табл. 1. Исследование планировалось как перекрестное, состоящее из двух последовательностей и четырех периодов: исходного периода, в течение которого животным давали обычный поддерживающий

корм для кошек (Advance для взрослых кошек с курицей и рисом; Affinity-Petcare), двух 60-дневных «вводных» периодов, на протяжении которых животные получали корма для растворения камней (корм 1 и корм 2), и одного 30-дневного периода «вымывания», когда животным давали обычный поддерживающий корм.

Перед началом исследования кошек кормили поддерживающим кормом 6 месяцев. Доступ к корму и воде был свободным.

Кошек произвольно разделили на две группы, каждая из которых получала один из двух лечебных кормов (корм 1 или корм 2) на протяжении 60 дней. Кровь и мочу отбирали до начала кормления лечебными кормами и через 30 и 60 дней кормления. Затем в течение периода «вымывания» давали обычный поддерживающий корм. После периода «вымывания» корм для каждой группы меняли на противоположный и продолжали кормление 60дней, пробы отбирали по такому же графику. В начале каждой последовательности записывали массу тела.

Пробы крови и мочи отбирали одновременно (в течение 10 минут) в одно время дня, между 16:00 и 17:00, во избежание артефактов, связанных с суточными ритмами. Корм перед отбором проб не убирали. Кровь, взятую из яремной вены, использовали для клинического анализа и биохимического анализа сыворотки (ионизированный и общий кальций, магний, фосфор, ПТГ, кальцитриол, натрий, калий, хлориды и креатинин). В пробах мочи, полученных путем цистоцентеза, определяли фракционное выведение кальция, магния, фосфора, натрия, хлоридов, калия и креатинина.

Результаты

Во время исследования изменений массы тела не отмечено. На 0 и 60 день масса составила 3,6 (2,6...5,0) кг и 3,2 (2,7...4,9) кг (корм 1); 3,1 (2,7...4,2) кг и 3,3 (2,6...4,9) кг (корм 2), соответственно.

Параметры минерального обмена и креатинина в образцах плазмы. Изменения показателей крови после кормления рационами для растворения камней сравнивали с исходными значениями, полученными во время кормления кошек обычным поддерживающим кормом (табл. 2). Значимых различий в концентрациях креатинина в плазме после кормления поддерживающим кормом и кормом 1 не обнаружено. А после кормления кормом 2 концентрация креатинина в плазме снизилась $(c\ 106,1\ (70,7...132,6)\ до\ 97,2\ (79,6...123,8)\ мкмоль/л$ на 30-й день, р < 0,05). Кормление рационами для растворения камней в течение двух месяцев не изменило плазменные концентрации ионизированного кальция, общего кальция, фосфора, магния и ПТГ. Однако после применения обоих лечебных

1. Состав кормов, которые получали кошки во время исследования, в пересчете на сухое вещество (по данным производителя)

Composition based on dry matter (as supplied by the manufacturer) of the diets fed to the cats during the study

Состав	Контрольный корм	Корм 1	Корм 2
Белок, %	35,0	34,5	34,5
Углеводы, %	30,0	31,9	29,5
Липиды, %	16,0	26,7	15,0
Клетчатка, %	1,5	0,9	2,7
Обменная энергия, ккал/кг	4180	4590	4070
Кальций, %	1,10	0,87	0,80
Фосфор, %	1,00	0,71	0,70
Соотношение кальция/ фосфора, %	1,10	1,23	1,14
Магний, %	0,085	0,06	0,05
Натрий, %	0,30	0,40	0,90
Калий, %	0,80	0,95	1,00
Хлориды, %	1,05	1,31	1,90
Витамин D, мкг/кг	37,5	14,7	19,1

Контрольный корм: Advance для взрослых кошек с курицей и рисом

кормов было отмечено выраженное снижение концентрации кальцитриола: с 236,4 (122,4... 429,6) до 170,4 (108,0...394,3) пмоль/л (корм 1) и с 278,4 (153,6...492,0) до 177,1 (87,6...392,4) пмоль/л (корм 2), р < 0,05 (см. табл. 2). Изменений концентрации калия и хлоридов в плазме после кормления рационами для растворения камней не обнаружено. Через 30 дней было отмечено значительное снижение концентрации натрия в плазме: с 156,4 (152,7...166,1) до 152,6 (150,8...158,6) моль/л, р < 0,05 у кошек, получавших корм 2.

Минеральный состав мочи и фракционное выведение электролитов. В таблице 3 приведены показатели мочи после кормления рационами для растворения камней. После замены поддерживающего корма на любой из лечебных кормов удельный вес мочи снизился. Снижение было наиболее выраженным через 30 дней: с 1,068 (1,060... 1,082) до 1,060 (1,048...1,080) (р < 0,05) (корм 1) и с 1,064 (1,048...1,092) до 1,050 (1,036...1,068) (р < 0,05) (корм 2). Изменения рН мочи наблюдались только после кормления кормом 1: с 6,5 (5,5...7,5) до 5,5 (5,5...6,0) через 60 дней, р < 0,05).После кормления кормом 1 наблюдалось значимое повышение концентрации кальция в моче: c 0,3 (0,2...0,5)до 0,4 (0,3...0,7) моль/л и ФВ кальция: с 0,06 (0,03...0,1) до 0,08 (0,04...0,1) % через 60 дней. Концентрация фосфора в моче снизилась через 30 дней кормления обоими лечебными кормами и вернулась к исходному уровню через 60 дней. ФВ фосфора снизилось после 30 дней кормления кормом 1: с 24,0 (13,5...41,2) до 19,2 (4,9...26,6) %). Концентрации магния в моче значительно повысились после кормления обоими лечебными кормами: с 1,4 (0,1...1,7) до 1,5 (1,3...2,4) моль/л (корм1) и с 1,1 (0,4...1,9) до 2,0 (0,1...3,1) моль/л (корм 2). Однако значительные различия в ФВ магния были обнаружены только после кормления кормом 2 в течение 30 дней (табл. 3). ФВ натрия и хлоридов у кошек, получавших корм 1, осталось неизменным, а у кошек, получавших корм 2, значительно повысилось через 60 дней (р < 0,05): ФВ натрия: 0,84 (0,71...1,12) в сравнении с 0,22 (0,08...0,47) %; ФВ хлоридов: 1,21 (0,92...1,58) в сравнении с 0,66 (0,14...1,48) %.

Обсуждение

И поддерживающий, и лечебный корм для растворения камней соответствовали минимальным требованиям к содержанию питательных веществ для взрослых кошек [17], хотя согласно указаниям производителя корма 1, он предназначен для периодического или дополнительного применения. В кормах для растворения камней содержание минеральных веществ было ниже (меньше кальция, фосфора и магния), чем в поддерживающем корме. Однако после кормления рационами для растворения камней в плазме не было обнаружено значительных изменений в концентрации ионизированного кальция, общего кальция, фосфора и магния. Таким образом, несмотря на сниженное содержание кальция, фосфора и магния в этих кормах, его, по-видимому, достаточно для поддержания нормальных концентраций этих микроэлементов в плазме при кормлении на протяжении двух месяцев. Эти данные согласуются с результатами предыдущих исследований [11]. Недостаточное поступление кальция привело бы к повышению концентрации ПТГ (и кальцитриола) в плазме для поддержания концентрации кальция за счет мобилизации из костей и усиления ФВ фосфора для выведения мобилизованного фосфора. Так как изменений концентрации ПТГ в плазме не обнаружено, обоснованно заключить, что низкие концентрации кальция в рационах для растворения камней достаточны и соответствуют минимальной потребности. Вероятно, что более низкое содержание витамина D в кормах для растворения камней (по сравнению с поддерживающим кормом) привело к снижению плазменной концентрации кальцитриола, основного метаболита витамина D. Однако поскольку концентрации кальцитриола после кормления кормами для растворения камней оставались в пределах нормы [20] и не влияли на концентрации кальция в плазме, значимость 2. Параметры минерального обмена в образцах плазмы, взятых у кошек до (0 день) и после (30 и 60 день) применения кормов для растворения камней (корм 1 и корм 2

Parameters of mineral metabolism in plasma samples obtained from cats before (0 days) a after (30 and 60 days) being fed calculolytic diets (Diet 1 and Diet 2)

	Время, день)				
Показатель	Корм	0	30	60	
		Медиана (диапазон)	Медиана (диапазон)	Медиана (диапазон)	
Ионизированный кальций, моль/л	1	1,3 (1,21,3)	1,3 (1,21,3)	1,3 (1,21,3)	
	2	1,3 (1,21,4)	1,3 (1,21,4)	1,3 (1,21,4)	
Общий кальций, моль/л	1	2,4 (2,02,9)	2,5 (2,12,7)	2,4 (2,22,9)	
	2	2,4 (2,32,8)	2,4 (2,03,0)	2,6 (2,12,9)	
Фосфор, моль/л	1	1,6 (1,12,5)	1,5 (1,12,2)	1,5 (0,92,0)	
	2	1,6 (1,12,4)	1,6 (0,92,3)	1,5 (1,12,4)	
Магний, моль/л	1	0,9 (0,71,4)	0,9 (0,71,3)	0,8 (0,71,3)	
	2	0,9 (0,71,3)	0,9 (0,61,2)	0,9 (0,71,3)	
ПТГ, пмоль/л	1	0,6 (0,32,7)	0,6 (0,22,5)	0,3 (0,11,7)	
	2	0,5 (0,22,2)	0,6 (0,12,1)	0,5 (0,21,7)	
Кальцитриол, пмоль/л		236,4 (122,4429,6)	176,2* (108,2413,8)	170,4* (108,0394,3)	
	2	278,4 (153,6492,0)	218,9* (103,4379,7)	177,1* (87,6392,4)	
Сравнение между разными периодами времени: *p < 0,05 по сравнению с нулевым моментом.					

3. Минеральный состав мочи, взятой у кошек до (Одень) и после (30 и 60 дни) применения кормов для растворения камней (корм 1 и корм 2)

Mineral in urine samples obtained from cats before (0 days) a after (30 and 60 days) being fed calculolytic diets (Diet 1 and Diet 2)

		Время(дней)			
Показатель	Корм	0	30	60	
		Медиана (диапазон)	Медиана (диапазон)	Медиана(диапазон)	
Кальций в моче, моль/л	1	0,3 (0,20,5)	0,3 (0,20,5)	0,4*, [†] ,£ (0,30,7)	
	2	0,3 (0,20,4)	0,3 (0,20,5)	0,3 (0,20,4)	
ФВ кальция, %	1	0,06 (0,030,1)	0,06 (0,040,07)	0,08*†,£ (0,040,1)	
	2	0,07 (0,030,1)	0,06 (0,030,1)	0,05 (0,030,1)	
Фосфор в моче, моль/л	1	82,3 (67,2134,0)	70,5* [£] (27,586,1)	82,7 ^{†,£} (54,6142,6)	
	2	69,3 (43,6137,9)	40,6* (27,870,8)	48,1* (36,594,9)	
ФВ фосфора, %	1	24,0 (13,541,2)	19,2* (4,926,6)	25,4 [†] ,£ (9,940,2)	
	2	18,2 (5,245,1)	12,6 (7,336,3)	15,6 (10,824,5)	
Магний в моче, моль/л	1	1,4 (0,11,7)	1,7* (1,12,3)	1,5* (1,32,4)	
	2	1,1 (0,41,9)	1,7* (0,72,6)	2,0* (0,13,1)	
ФВ магния, %	1	0,6 (0,071,0)	0,7 (0,41,3)	0,8 (0,41,1)	
	2	0,6 (0,11,0)	0,9* (0,42,9)	0,9 (0,031,9)	
Сравнение межлу периолами времени: *p < 0.05 в сравнении с нупевым моментом: †p < 0.05 в сравнении с 30 лнем					

Сравнение между периодами времени: p < 0.05 в сравнении с нулевым моментом; p < 0.05 в сравнении с 30 днем. Сравнение между кормами: p < 0.05 в сравнении скормом 2.

При кормлении кошек кормом 2 отмечена сильная корреляция между ΦB натрия и магния (r=0,795, p= 0,001), однако при кормлении кормом1 этого не обнаружено (r= -0,182, p=0,571). После кормления обоими кормами для растворения камней отмечена корреляция между pH мочи и ΦB магния (r = -0,376, p = 0,001) и кальция (r = -0,277, p = 0,018).

снижения концентрации кальцитриола остается под вопросом. Потребность в пищевом витамине D у взрослых кошек изучена недостаточно, и рекомендации для взрослых кошек основаны на потребности котят в витамине D — 6,25 мкг/кг корма [17]. У других видов потребность в витамине D установлена путем определения точки, когда снижение поступления витамина D с кормом вызывает повышение концентрации ПТГ в плазме. Если руководствоваться этим критерием, концентрация витамина D, поступающего в организм в составе кормов для растворения камней, представляется достаточной для удовлетворения нормальной потребности взрослых кошек.

При кормлении каждым из кормов для растворения камней удельный вес мочи на 30-й день был ниже, чем при кормлении поддерживающим кормом, однако поскольку это сухие корма, удельный вес не снизился до уровня, рекомендованного для профилактики мочекаменной болезни [2]. Таким образом, хотя для растворения камней можно успешно применять сухой корм, результаты настоящего исследования показывают, что сухие корма могут оказаться не лучшим выбором для кошек со струвитными камнями и что для решения этой проблемы лучше подходят корма в виде консервов. При кормлении кормом 2 снижение удельного веса мочи было значительно более выраженным, вероятно, за счет большего содержания соли. Небольшое наблюдаемое снижение удельного веса мочи произошло одновременно со значительным снижением концентрации креатинина в плазме кошек, получавших корм 2. Так как изменений массы тела не наблюдалось, снижение концентрации креатинина в плазме этих кошек могло объясняться повышением СКФ на фоне увеличения объема внеклеточной жидкости в результате потребления корма с повышенным содержанием соли. Повышение СКФ, если оно фактически имело место, и соответствующее усиление почечного кровотока могло снизить гипертоничность мозгового вещества почек и притупить реакцию на антидиуретический гормон. Кормление кормом для растворения камней с высоким содержанием соли могло усилить фильтрацию натрия и снизить высвобождение ренина и альдостерона, приведя к перераспределению натрия во внеклеточную жидкость и высвобождению в почечные канальцы вместе с водой. Все эти факторы могли способствовать небольшому наблюдаемому снижению удельного веса мочи.

Влияние содержания NaCl в рационе кошек на потребление воды оценивалось в экспериментальных условиях. Anderson [1] сообщает, что кошки, получающие рацион с низким (1,4 % в пересчете на сухое вещество) содержанием NaCl, потребляют меньше воды, чем кошки, получающие рацион с высоким содержанием NaCl (4,6 % в пересчете на сухое вещество). Кроме того, сообщалось,

что рацион с повышенным содержанием натрия увеличивает объем мочи и снижает ее удельный вес [8, 19]. У здоровых кошек кормление рационами с высоким содержанием натрия не приводило к повышению артериального давления или снижению минеральной плотности костей [4, 22, 23]. Таким образом, возможно, что повышенное содержание соли является приемлемым способом усиления диуреза у кошек с заболеваниями нижних мочевыводящих путей без других системных заболеваний.

У кошек, получавших корм 1, рН мочи значительно снизился, чего не наблюдалось при кормлении кормом 2. Снижение рН мочи могло повлиять на усиление выведения кальция и магния с мочой у кошек, получавших корм 1, что показано исследованием корреляции и подтверждается ранее опубликованными данными [5]. Изменения рациона, ведущие к метаболическому ацидозу, способны повысить скорость клубочковой фильтрации кальция, снизить реабсорбцию кальция в канальцах и способствовать мобилизации кальция из скелета [24]. Сообщалось, что у взрослых кошек подкисление рациона вызывает усиленное выделение кальция [5, 6] и магния [9] с мочой. Усиление выделения кальция и магния с мочой, по-видимому, опосредовано снижением реабсорбции кальция и магния в канальцах независимо от ПТГ, однако зависит от изменений общей секреции кислоты [9].

Как и ожидалось, при рационе с низким содержанием фосфора концентрация фосфора в моче и ФВ фосфора имели тенденцию к снижению по сравнению с поддерживающим кормом с более высоким содержанием фосфора. На 30-й день снижение было более выраженным, чем на 60-й. Таким образом, по-видимому, выведение фосфора почками регулируется сложной системой, включающей экспрессию транспортеров натрия фосфата (NaPi,) и секрецию гормонов, способствующих выведению фосфора (ПТГ и фактор роста фибробластов 23), для компенсации сниженного потребления фосфора с кормом, при этом со временем ФВ фосфора стабилизируется. Таким образом, снижение концентрации фосфора в моче, которое должно препятствовать формированию струвитных кристаллов и последующему образованию камней у кошек в группе риска [18], может оказаться временным.

Интересным результатом этой работы было повышение концентрации магния в моче и ФВ магния после кормления рационами для растворения камней, более выраженное при кормлении кормом 2. Такое повышение выделения магния с мочой кажется парадоксальным, так как в лечебных кормах, особенно в корме 2, концентрация магния ниже, чем в поддерживающих кормах, и противоречит принципу профилактики формирования струвитных кристаллов. Вероятно, что на усиление выведения магния с мочой после кормления кормом 1 влияет снижение рН мочи, как обсуждалось ранее. У кошек, получающих

корм 2, повышение выделения магния с мочой, повидимому, связано с высоким содержанием натрия в корме и последующим усилением его выведения с мочой. Отмечено в эксперименте на грызунах и у людей, что усиление потребления соли повышает потери кальция и магния с мочой [3, 13, 15]. В настоящем исследовании обнаружена очень высокая корреляция между выведением натрия и магния при кормлении рационом с высоким содержанием натрия, которая отсутствовала при нормальном содержании натрия. Таким образом, результаты подтверждают представление о том, что натрий влияет на выведение двухвалентных катионов с мочой у кошек, хотя у кошек в настоящем исследовании этот эффект наблюдался в основном в отношении магния и в меньшей степени — кальция.

Результаты этого исследования имеют клиническое значение, относящееся к применению сухих кормов для растворения камней у кошек. Хотя влажные корма предпочтительнее сухих, существуют доказательства низкого уровня, показывающие эффективность сухих кормов для растворения камней, выражающуюся в уменьшении клинических признаков [14]. Результаты настоящего исследования дополнительно подтверждают безопасность этих сухих кормов, так как они не изменяли параметры минерального обмена.

Заключение

Рационы для растворения камней не оказывают отрицательного воздействия на минеральный обмен. Хотя было обнаружено снижение концентрации кальцитриола в плазме, связанное с меньшим содержанием витамина D в кормах для растворения камней, клиническая значимость этого изменения незначительна. Оба корма повышали выведение магния по разным механизмам: за счет подкисления мочи и повышенного содержания натрия. На основании проведенного исследования можно сделать вывод о безопасности рационов для растворения камней и рекомендовать их для более широкого применения у кошек с мочекаменной болезнью.

Конфликт интересов

Конфликт интересов отсутствует.

Библиография

- Anderson, R.S. Water balance in the dog and cat / R.S. Anderson// Journal of Small Animal Practice — 1982. — No. 23. — pp. 588-598.
- Buckley, C.M. Effect of dietary water intake on urinary output, specific gravity and relative supersaturation for calcium oxalate and struvite in the cat / C.M. Bucley, A. Hawthorne, A. Colver, et al. // The British Journal of Nutrition. — 2011. — No. 106 (Suppl 1). — S128-S130.
- 3. Chan E.L., Interrelationships between urinary sodium, calcium, hydroxyproline and serum PTH in healthy subjects / E.L. Chan, C.S. Ho,

- D. MacDonald, et al. // Acta Endocrinologica (Copenh). 1992. No. 127. pp. 242-245.
- Chetboul, V. Cardiovascular effects of dietary salt intake in aged healthy cats: a 2-year prospective randomized, blinded, and controlled study/ V. Chetboul, B.S. Reynolds, E. Trehiou-Sechi, et al. // PLoSOne. — 2014. — No. 9. — e97862. doi:10.1371/journal.pone.0097862.
- Ching, S.V. The effect of chronic dietary acidification using ammonium chloride on acid-base and mineral metabolism in the adult cat / S.V. Ching, M.J. Fettman, D.W. Hamar, et al. // TheJournalofNutrition. — 1989. — No. 119. — pp. 902-915.
- 6. Ching, S.V. Trabecular bone remodeling and bone mineral density in the adult cat during chronic dietary acidification with ammonium chloride / S.V. Ching, R.W. Norrdin, M.J., Fettman et al. // Journal of Bone and Mineral Research. 1990. No. 5. pp. 547-556.
- Finco, D.R. Reliability of using random urine samples for "spot" determination of fractional excretion of electrolytes in cats / D.R. Finco, S.A. Brown, J.A. Barsanti, et al. // American Journal of Veterinary Research. — 1997. — No. 58. — pp. 1184-1187.
- Hawthorne, A.J. Dietary sodium promotes increased water intake and urine volume in cats / A.J. Hawthorne, P.J. Markwell // The Journal of Nutrition. — 2004. — No. 134. — pp. 2128S–2129S.
- Houillier, P. Calciuric response to an acute acid load in healthy subjects and hypercalciuric calcium stone formers / P. Houillier, M. Normand, M. Froissart, et al. // Kidney International. — 1996. — No. 50. pp. 987-997.
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: The National Academies Press (USA), 2011.
- Kerr, K.R. Companion Animals Symposium: dietary management of feline lower urinary tract symptoms / K.R. Ken // Journal of Animal Science. — 2013. — No. 91. — pp. 2965-2975.
- Kirk, C.A. Effects of sodium chloride on selected parameters in cats / C.A. Kirk, D.E. Jewell, S.R. Lowry // Veterinary Therapeutics. — 2006. — No. 7. — pp. 333–346.
- Lee, C.T. Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule / C.T. Lee, Y.H. Lien, W. Lai, et al. // Nephron Physiology. — 2012. — No. 122. pp. 19-27.
- Markwell, P.J. Clinical evaluation of commercially available urinary acidification diets in the management of idiopathic cystitis in cats / P.J. Markwell, C.A. Buffington, D.J. Chew, et al. // Journal of the American Veterinary Medical Association. — 1999. — No. 214. pp. 361-365.
- Massey, L.K. Dietary salt, urinary calcium, and bone loss / L.K. Massey, S.J. Whiting // Journal of Bone and Mineral Research. — 1996. — No. 11. — pp. 731-736.
- Midkiff, A.M. Idiopathic hypercalcemia in cats / A.M. Midkiff, D.J. Chew, J.F. Randolph, et al. // Journal of Veterinary Internal Medicine. — 2000. — No. 14. — pp. 619-626.
- National Research Council (NRC). Vitamins. In: Nutrient Requirements of Dogs and Cats. The National Academies Press (USA), Washington DC, 2006. — pp. 204-205.
- Osborne, C.A. Medical dissolution of feline struvite urocystoliths., / C.A. Osborne, J.P. Lulich, J.M., Kruger et al. // Journal of the American Veterinary Medical Association. — 1990. — No. 196. — pp. 1053-1063.
- Patlack, M. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats / N. Patlack, H. Burmeier, T. Brenten, et al. // Veterinary Journal. — 2014. — No. 201. — pp. 401-405.
- Pineda, C., Mineral metabolism in growing cats: changes in the values of blood parameters with age / C. Pineda, E. Aguilera-Tejero, F. Guerrero, et al. // Journal of Feline Medicine and Surgery. — 2013. — No. 15. — pp. 866-871.
- Pineda, C. Feline parathyroid hormone: validation of hormoneal assays and dynamics of secretion / C. Pineda, E. Aguilera-Tejero, A.I. Raya, et al. // Domestic Animal Endocrinology. — 2012. — No. 42. pp. 256-264.
- 22. Reynolds, B.S. Effects of dietary salt intake on renal function: a2year study in healthy aged cats / B.S. Reynolds, V. Chetboul, P. Nguyen, et al. // Journal of Veterinary Internal Medicine. 2013. No. 27. pp. 507-515.
- Xu, H. Effects of dietary sodium chloride on health parameters in mature cats / H. Xu, D.P. Laflamme, G.L. Long // Journal of Feline Medicine and Surgery. — 2009. — No. 11. — pp. 435-441.
- 24. Zerwekh J.E., Mechanisms of hypercalciuria / J.E. Zerwekh, C.Y. Pak// Pathobiology Annual. 1982. No. 12. pp. 185-201.

новинка

ветпродакс

ledu-URO

Комплекс дополнительного питания при мочекаменной болезни и цистите

- Здоровье мочевыводящих путей.
- Мягкая поддержка почек и мочевого пузыря.

 Противомикробное и противовоспалительное действие.

Доступно в фасовках 30 мл и 60 мл.

Дозировка: 1 мл на 10кг

Состав в 1 мл содержится: экстракт клюквы — 18 мг, экстракт толокнянки с содержанием арбутина от 98% — 0,174 мг, D-манноза — 360 мг, глюкозамина сульфат — 60 мг и вспомогательные вещества: гидроксиэтилцеллюлоза, метилпарагидроксибензоат натриевая соль, вода очищенная до 1,0 мл.

OOO "Ветпродакс" г. Москва, ул. Кольская, д. 2к4 +7 (499) 400-14-07 info@vet-prod.ru

